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Julich, West Germany 

$Department of Applied Mathematics, University of New South Wales, PO Box 1, 
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Abstract. A real-space renormalisation group method of calculating the exponent y for 
a single self-avoiding walk is presented. Application of the method on the square lattice 
yields y = 1.35*0.03, in excellent agreement with the exact value of g. 

Direct real-space renormalisation group methods for studying self-avoiding walks, in 
which the renormalisation is carried out by enumerating walk configurations that span 
(small) cells of the lattice, were first performed by Family (1981) in three dimensions 
an by de Queiroz and Chaves (1980) for two dimensions. (A detailed discussion and 
review is given by Stanley et a1 1982.) These methods are similar to the successful 
cell renormalisation methods used in percolation (see e.g. Reynolds et al 1980, Stanley 
et a1 1982.) However, in the self-avoiding walk case only one exponent-v, describing 
the asymptotic behaviour of the mean square end-to-end distance of the walk-has 
to date been accessible. In this letter we illustrate a method of directly estimating the 
exponent y by direct cell renormalisation of a single self-avoiding walk. This exponent 
describes the asymptotic behaviour of the number, cN, of self-avoiding walks from a 
fixed origin, which varies as 

CN  AN^-'^^, N + W ,  (1) 
where p is the connectivity constant of the walk on the lattice. 

In a magnetic system, the exponent v is related simply to the thermal field exponent 
while y follows from the magnetic sclaing field. For percolation and the self-avoiding 
walk problem, the role of the thermal field is played by the percolation probability 
and the monomer fugacity, respectively. In percolation, the magnetic field is replaced 
by the ghost field (Stanley et al 1982), which is then renormalised along with the 
percolation probability within the cell calculation. Unfortunately, the analogue of the 
ghost field for the self-avoiding walk problem is uncleart and some alternative field 
must be introduced into a cell calculation if such a calculation is to yield the second 
scaling index of a self-avoiding walk. One possible field can be motivated by reference 
to a cross-over phenomenon occurring in magnetic systems. 

t We are referring to the single walk problem. Des Cloizeaux (1975) (see also de Gennes 1979, Gujrati 
1981) has shown that for a polymer solution the role of the magnetic field is played by the concentration. 
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Consider a n-component spin system s = ( sl, s2, . . . , s“) on a d-dimensional lattice 
R with Hamiltonian 

where the sum is over all near-neighbour bonds of the lattice. By the usual arguments 
(see e.g. the appendix of Daoud er al 1975, de Gennes 1979), the zero-field susceptibil- 
ity of this model, in the limit n + 0, is the chain generating function 

a 

C ( K ) =  C c ~ K ~ = A ( ~ - K / K , ) - ~ ,  K -P Kc-. (3) 
N =O 

The connective constant, appearing in ( l ) ,  

P = l /Kc,  (4) 

where K,  is the critical temperature (again for n + 0) of the spin analogue. 

point of an appropriate recursion relation 
In a renormalisation group calculation K,  (and hence P )  is determined by the fixed 

K + K ’ =  R ( K )  ( 5 )  

with 

Y =In b/ln (R’(KJ),  

where b is the spatial rescaling factor of the transformationa and R’(K)  =dR/dK. 
This is standard. The problem we address is estimating y. 

To do so, consider the duplicated system 

H = Ho[ s] + Ho[ t ]  + A r ;s ; ,  
r 

(7) 

where { t }  are also n-component spins populating a lattice R‘ which is an identical copy 
of R and we have introduced a coupling A between the l-components of the spins on 
equvalent sites on R and 0’. The partition function of the duplicated system Z ( K ,  A) 
can be written 

where the expectation value is with regard to the decoupled Hamiltonian Ho[s ]+  H o [ t ] .  
Hence, expanding the exponential and assuming T > T,, the free energy per spin 

(9) p f ( ~ ,  A )  = p f ( ~ ,  0) --:A* c (S;~;);+O(A~).  
r 

Our interest is in the behaviour of f ( K ,  A) for small A and K near K, = Kc(A = 0). 
Here we expect the singular part of f to scale as 

Pf,(K, A) = td”d(A/fd) (10) 

( S A S ; ) ~  i= D( r / , $ ) /  rdW2+”,  r + m ,  (11) 

Pf , (K,A) .=Ard”+A2Btud-2y . .  . , t + O ,  (12) 

with f = K,- K. If we assume that (SAS:), scales as 

where 5 -  t -”  is the correlation length, substitution of (11) in (9) implies that 
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where A and B are constants and y = (2 - 7) v. This result is consistent with (10) if 

4 = Y. (13) 

If we extend the scaling formulation to  include a magnetic field, it is then straightforward 
to show that the zero-field susceptibility of the duplicated model similarily scales as 

Xn(K, A) z t - Y O ( A / r Y )  (14) 

as A-tOand K - t K , .  
To apply this result to our self-avoiding walk problem consider the expansion of 

,y as a double series in K and A ,  following the standard arguments (see e.g. the appendix 
of Dauod et a f  1975). In the limit n + O ,  the only diagrams that contribute are 
self-avoiding walks, in which each step between points in R (or R‘) is assigned a 
fugacity K but steps from R to R’ (and vice versa) carry fugacity A .  Explicitly 

where c ~ , ~ ,  is the number of N step walks with NI steps between the two copies. The 
cross-over scaling form (14) implies that 

C ( K ,  A )  z ( K  - K J - ” O ( A I ( K  - K J Y ) ,  K + Kc-,  A-tO, (16) 

where K,’  = p is the connective constant of R. 
Several remarks are in order. We have considered what may be called a ‘layer’ 

duplication since for d = 2, the Hamiltonian (7) corresponds to two layers R and 0’ 
linked by an inter-layer coupling A between equivalent sites. Alternative ways of 
coupling the two copies R and R’ together can be defined. For example, 

where r + S  labels some set of sites in R’. Provided this set is suitably local, there is 
no effect on the preceding analysis except to modify the coefficient B appearing in 
(12). The most useful duplication of the type (17) is where R and R’ are taken as 
isomorphic sub-lattices of some larger lattice. On the square lattice, for example, we 
can obtain a duplicated system if we regard K and A as the nearest and next-nearest 
neighbour interactions respectively; or in the context of a self-avoiding walk the 
fugacities associated with steps to next and next-neareast neighbour sites respectively. 

The identification 4 = y >  1 implies that A is a relevant perturbation at the fixed 
point of the decoupled system. In the ( K ,  A )  plane, we expect a flow topology as 
shown in figure 1, where both fixed points ( K * ,  A*)  and (K,, 0) have the same thermal 
exponent since the duplication process does not change the dimensionality or univer- 
sality class of the problem. This is in contrast, to a similar cross-over (in fact described 
by the same exponent 4 = y )  occurring if an infinite number of copies of R are coupled 
by A as occurs, for example, for inter-layer coupling on the simple cubic lattice (see 
Liu and Stanley 1973). In this case the fixed points have different exponents. In this 
context, the scaling theory has been discussed by Liu and Stanley (1973). (See also 
Huse and Fisher (1982) who consider the general problem of coupling two Ising 
systems together.) The identification 4 = y for magnetic systems was first made by 
Abe (1970) and Suzuki (1971). The extension of their idea to self-avoiding walks 
does not seem to have been made previously, although Liu and Stanley (1973) proved 
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0 Kc K 

Figure 1. Flow diagram of renormalisation trajectories for a duplicated system. 

that the derivatives [a‘C(K, A)/dAr]dso diverge with exponent ( r +  l ) y  which is con- 
sistent with (and implied by) (16). The analogous cross-over in percolation has been 
discussed by Redner and Coniglio (1980) and exploited, in a similar way that we shall 
exploit for the self-avoiding walks, by Oliviera (1981). 

Let us now illustrate how the preceding scaling ideas and results can be implimented 
and exploited in a cell calculation on a single self-avoiding walk. We shall report 
results for both ‘layer’ and ‘sub-lattice’ duplications, although, for sake of clarity, we 
focus attention on the sub-lattice procedure. 

For a detailed description of the cell method of renormalising a self-avoiding walk 
we refer to Stanley et a1 (1982). The only extension necessary is the inclusion of the 
second (duplicated) lattice. The resulting simplest cell constructions for the square 
lattice using both layer and sub-lattice duplication are shown in figure 2. Under 
renormalisation, these cells lead to renormalised couplings K’ and A‘ corresponding 
to the reduced cells as shown. For this transformation, b = 2. Clearly, K‘ and A’ are 
(complicated) functions of K and A. However, we only require the recursion relations 
for small A .  

Y Y  
1 , 

,L - - - - Q - .,’ 

0 0 
(U1 i b )  

Figure 2. Simplest cells for ( a )  layer duplication, ( b )  sub-lattice duplication. Bonds (-) 
or (- - - -) have fugacity K, while inter-copy bonds (- ) have fucacity A. - . - - 

Inspection of figure 2 shows that, for small A, the recursion relations will have the 
form 

K’ = R ( K )  + O( A’) A ’ = A g ( K ) + O ( A 3 )  (1 8a, b) 
since any walk contributing to the renormalisation of the fugacity K in the sume copy 
must make either no transition or an even number of transitions between the copies. 
Similarly, the renormalisation of A involves an odd number of inter-copy steps. For 
A = O ,  (18u) is simply the recursion relation for walks on a single copy of the lattice, 
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while (1  8 b )  shows that the resulting linear trcnsform near ( K c ,  0) is diagonal with two 
eigenvalues 

A T  = R’(K,) = b”” and AA = g(K,)  = by’’. (19) 

From this we obtain 

U-’ =In AT/ln b 

y = v(ln AJn b ) ,  
and 

where b is the spatial rescaling factor. 
In practice the functions R ( K )  and g ( K )  appearing in (18) are constructed by 

enumerating walks that appropriately span the cell. To illustrate the method we 
consider the cell of figure 2( b )  and use the ‘corner-rule’ of Stanley et a1 (1982) in 
which the walk is assumed to enter the cell at the corner indicated by ‘0’. The walk 
will then contribute to K’ if it reaches either of the sites A and to A’ if it reaches 
either of the sites B. Hence we obtain 

R ( K )  = K 2 + 2 K 3 + K 4  

g ( K )  = ( K 2 + 2 K 3 + K 4 ) ( 1  + 3 K  + 4 K 2 + 3 K 3 ) + ( K  + K 2 + K 4 ) ( K  +4K2+K3)  

from which we find 

(22) 

K ,  = 0.466, v = 0.715 and y = 1.483. (23) 

These estimates are improved by considering larger cells and different values of b. 
Rational values of b can be realised by renormalising a cell of s1 sites to a cell of 
s2 = s,/ b sites (see Stanley et al 1982). The results of these calculations, carried out 
by enumerating the required walks on a computer, are given in table 1. In all cases, 
the estimates of K,  and v agree with these of earlier works (see e.g., Kremer 1983a, b). 
Apparently, the sub-lattice method overestimates y while the layer method underesti- 
mates. These estimates of y can be further refined by extrapolation to b = 1 (Stanley 

Table 1. Results of direct renormalisation of a self-avoiding walk on the square lattice. 
Symbols refer to extrapolation shown in figure 3. (Detailed data on the enumeration can 
be obtained from the first author.) 

Number of Y 

lattice) b Kc Y duplication) duplication) 

sites in 
cell (one (layer (sub-lattice 

2 x 2  2 0.466 0.715 (0)  0.390 1.483 (+) 
3 x 3  3 0.447 0.719 0.677 1.493 
3 x 3  I 0.432 0.722 (0) 1.243 (X) 1.535 (+) 
4 x 4  4 0.435 0.722 0.790 1.475 
4 x 4  2 0.423 0.726 1.263 1.488 

5 x 5  5 0.426 0.724 0.855 1.462 

3 

4 
4 x 4  3 0.416 0.731 (0)  1.289 (X) 1.416 (+) 

5 x 5  2 0.417 0.729 (0) 1.278 (0) 1.464 (0) 
5 x 5  3 0.411 0.733 (0) 1.303 (0) 1.401 (U) 
5 x 5  4 0.407 0.736 (0)  1.319 (0) 1.379 (U) 

( X I  (+) 

5 

5 

5 
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et a1 1982). This extrapolation is shown in figure 3 and yields the estimate 

y = 1.35 * 0.03. (24) 

For comparison, we show a similar extrapolation of v. 

I ‘ t  

1 u  1 5  2 0  2 5  
b 

Figure 3. Extrapolation to b = 1 of estimates of y and v for d = 2 square lattice. Points 
marked (+) and (U) correspond to the sub-lattice method, while (0) and ( X )  refer to the 
layer procedure (see table 1). 

The result in (24) compares favourably with direct series methods (see e.g. Guttmann 
1983). On the basis of these calculations, y for many years was believed to be 4. 
Recently Nienhuis (1982) analytically investigated a special n-component spin system 
on the honeycomb lattice. In the limit n + 0, he found 

y =%= 1.343 7 5 . .  , (25) 

Re-analysis of the series expansions (Guttmann 1983, Majid et al 1983) supports this 
value rather than $. We cannot, of course, distinguish between and 2 but it is gratifying 
that the central value of our extrapolation is in such excellent agreement with (25). 

In principle, the same method can be applied in three dimensions but here computing 
requirements limit the calculation to 2 X 2 X 2 cells. In this case, the ‘layer’ duplication 
gives a completely wrong result, while the sub-lattice duplication yields y = 1.375 
compared to the ‘accepted’ value of 5. 

The method can also be modified to yield the ‘surface’ exponents y1 and Y ~ , ~ ,  which 
describe the configuration of walks attached to a surface (Barber er a1 1978). Here 
the duplicated lattices (now assumed to  have a free surface) are coupled by an 
interaction A involving only spins in the surface. The scaling argument used for the 
bulk case can be carried through again with the conclusion that the relevant cross-over 
exponent is yl , l ,  which on the basis of directed enumeration, is expected to be (Barber 
et a1 1978) 

y~ ,~=-0 .20*0 .02  (d  = 2 ) .  
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The negative sign implies that the surface coupling between the lattices is now irrelevant. 
Unfortunately, the small cells used in the present study are too small, even for d = 2, 
to yield sensible estimates. Indeed, on the basis of this calculation one would conclude 
that yl,l > 0, although an appreciable decrease as b +.l is apparent. 

Despite this failure, the method of duplicating the lattice and thereby calculating y 
as a cross-over exponent is a useful addition to the armoury of renormalisation group 
techniques. One way of overcoming the small cell limitations would be to use Monte 
Carlo methods to sample larger cells as has been done for percolation (Reynolds et 
a1 1980). Such a development, however, is beyond the scope of this paper. 
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